Abstract

Tags have been popularly utilized for better annotating, organizing and searching for desirable images. Image tagging is the problem of automatically assigning tags to images. One major challenge for image tagging is that the existing/training labels associated with image examples might be incomplete and noisy. Valuable prior work has focused on improving the accuracy of the assigned tags, but very limited work tackles the efficiency issue in image tagging, which is a critical problem in many large scale real world applications. This paper proposes a novel Binary Codes Embedding approach for Fast Image Tagging (BCE-FIT) with incomplete labels. In particular, we construct compact binary codes for both image examples and tags such that the observed tags are consistent with the constructed binary codes. We then formulate the problem of learning binary codes as a discrete optimization problem. An efficient iterative method is developed to solve the relaxation problem, followed by a novel binarization method based on orthogonal transformation to obtain the binary codes from the relaxed solution. Experimental results on two large scale datasets demonstrate that the proposed approach can achieve similar accuracy with state-of-the-art methods while using much less time, which is important for large scale applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.