Abstract

This paper presents an ensemble neural network and interval neutrosophic sets approach to the problem of binary classification. A bagging technique is applied to an ensemble of pairs of neural networks created to predict degree of truth membership, indeterminacy membership, and false membership values in the interval neutrosophic sets. In our approach, the error and vagueness are quantified in the classification process as well. A number of aggregation techniques are proposed in this paper. We applied our techniques to the classical benchmark problems including ionosphere, pima-Indians diabetes, and liver-disorders from the UCI machine learning repository. Our approaches improve the classification performance as compared to the existing techniques which applied only to the truth membership values. Furthermore, the proposed ensemble techniques also provide better results than those obtained from only a single pair of neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.