Abstract

Let k ≥ 3, θ a nontrivial equivalence relation on E k = {0, . . . ,k – 1}, and ρ a binary central relation on E k (a reflexive graph with a vertex having E k as its neighborhood). It is known that the clones Pol θ and Pol ρ (of operations on E k preserving θ and ρ, respectively) are maximal clones; i.e., covered by the largest clone in the inclusion-ordered lattice of clones on E k . In this paper, we give the classification of all binary central relations ρ on E k such that the clone Pol θ ∩ Pol ρ is maximal in Pol θ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.