Abstract

In order to further understand the relaxation behavior of binary blends of star and linear chains, new polymer blends consisting of linear poly(hydroxybutyrate) (PHB) matrix and PHB star molecules are designed, and their dynamics is investigated by varying the star concentrations and the molar mass of the linear matrix, while keeping few or no star–star entanglements in the blends. By studying the constraint release Rouse (CRR) relaxation of the star polymer diluted in the linear matrix at concentrations low enough to neglect star–star entanglements, we first point out the importance of the number of short linear chain entanglements on the CRR time of the long chains. For the blends composed of a larger proportion of star molecules, we then use this new definition of CRR time to determine the necessary time of a star–star entanglement segment to relax by CRR and explore its dilated tube, at the rhythm of the disentanglement/re-entanglements of the short chains. By considering this as the new reference tim...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.