Abstract
This study introduced a novel ant colony optimization algorithm that implements the population selection strategy of the Estimation of Distribution Algorithm and a new pheromone updating formula. It aimed to optimize the performance of G-type random high-order satisfiability logic structures embedded in Discrete Hopfield Neural Networks, thereby enhancing the efficiency of the Hopfield Neural Network learning algorithm. Through comparative analysis with other metaheuristic algorithms, our model demonstrated superior performance in terms of global convergence, time complexity, and algorithm complexity. Additionally, we evaluated the learning phase, retrieval phase, and similarity analysis using various ratios of literals and clauses. It was shown that our proposed model exhibits stronger search ability compared to other metaheuristic algorithms and Exhaustive Search. Our model enhanced the efficiency of the learning phase, resulting in the number of global solutions accounting for 100 %, and significantly improved the global solution diversity. These advancements contributed to the efficiency of the model in convergence, rendering it applicable to a wide range of nonlinear classification and prediction problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.