Abstract

Linear complementary dual codes (LCD codes for short) are an important subclass of linear codes which have nice applications in communication systems, cryptography, consumer electronics and information protection. In the literature, it has been proved that an [n,k,d] Euclidean LCD code over Fq with q>3 exists if there is an [n,k,d] linear code over Fq, where q is a prime power. However, the existence of binary and ternary Euclidean LCD codes has not been totally characterized. Hence it is interesting to construct binary and ternary Euclidean LCD codes with new parameters. In this paper, we construct new families of binary and ternary leading-systematic Euclidean LCD codes from some special functions including semibent functions, quadratic functions, almost bent functions, and planar functions. These LCD codes are not constructed directly from such functions, but come from some self-orthogonal codes constructed with such functions. Compared with known binary and ternary LCD codes, the LCD codes in this paper have new parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.