Abstract

The multicomponent adsorption of synthetic dyes has great relevance in the treatment of effluents due to the complexity of the adsorbate-adsorbent interactions. Therefore, this study provides useful information about the adsorption capacity of methylene blue (MB) and crystal violet (CV) in a bioadsorbent (mandarin peels) in a single-component and competitive system using detailed multivariate calibration analysis. The PLS1 multivariate calibration model was used to quantify the adsorbates. In mono and two-component systems, the adsorption capacity of CV (1.26-1.36 mg g-1) was superior when compared to MB (0.925-0.913 mg g-1), characterizing synergistic adsorption for CV and antagonistic adsorption for MB. The Sips model was effective for describing single-component systems, suggesting that adsorption did not occur in the monolayer. For competitive adsorption, modified, unmodified, and extended models were used to understand the interactions between the dyes and the bioadsorbent. The modified Redlich-Peterson (MRP) model was effective in describing the behavior of the binary system, indicating that the interaction forces with the adsorbate were significant. Thus, the bioadsorbent showed promising results for competitive adsorption, thus being of relevance to the industrial sector. Density functional calculations were also performed to characterize the atomic interactions for the removal of both dyes on mandarin peels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call