Abstract
193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long period. These 193nm binary masks seem to be well-known but recent studies have shown surprising degrading effects, like Electric Field induced chromium Migration (EFM) [1] or chromium migration <sup>[2] [3]</sup> . Phase shift Masks (PSM) or Opaque MoSi On Glass (OMOG) might not be concerned by these effects <sup>[4] [6]</sup> under certain conditions. In this paper, we will focus our study on two layers gate and metal lines. We will detail the effects of mask aging, with SEM top view pictures revealing a degraded chromium edge profile and TEM chemical analyses demonstrating the growth of a chromium oxide on the sidewall. SEMCD measurements after volume production indicated a modified CD with respect to initial CD data after manufacture. A regression analysis of these CD measurements shows a radial effect, a die effect and an isolated-dense effect. Mask cleaning effectiveness has also been investigated, with sulphate or ozone cleans, to recover the mask quality in terms of CD. In complement, wafer intrafield CD measurements have been performed on the most sensitive structure to monitor the evolution of the aging effect on mask CD uniformity. Mask CD drift have been correlated with exposure dose drift and isolated-dense bias CD drift on wafers. In the end, we will try to propose a physical explanation of this aging phenomenon and a solution to prevent from it occurring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.