Abstract
In this study, a binarized neural network (BNN) of silicon diode arrays achieved vector–matrix multiplication (VMM) between the binarized weights and inputs in these arrays. The diodes that operate in a positive-feedback loop in their p+-n-p-n+ device structure possess steep switching and bistable characteristics with an extremely low subthreshold swing (below 1 mV) and a high current ratio (approximately 108). Moreover, the arrays show a self-rectifying functionality and an outstanding linearity by an R-squared value of 0.99986, which allows to compose a synaptic cell with a single diode. A 2 × 2 diode array can perform matrix multiply-accumulate operations for various binarized weight matrix cases with some input vectors, which is in high concordance with the VMM, owing to the high reliability and uniformity of the diodes. Moreover, the disturbance-free, nondestructive readout, and semi-permanent holding characteristics of the diode arrays support the feasibility of implementing the BNN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.