Abstract

ABSTRACT The scaling of the specific Type Ia supernova (SN Ia) rate with host galaxy stellar mass $\dot{\text{N}}_\text{Ia} / \text{M}_\star \sim \text{M}_\star ^{-0.3}$ as measured in ASAS-SN and DES strongly suggests that the number of SNe Ia produced by a stellar population depends inversely on its metallicity. We estimate the strength of the required metallicity dependence by combining the average star formation histories (SFHs) of galaxies as a function of their stellar mass with the mass–metallicity relation (MZR) for galaxies and common parametrizations for the SN Ia delay-time distribution. The differences in SFHs can account for only ∼30 per cent of the increase in the specific SN Ia rate between stellar masses of M⋆ = 1010 and 107.2 M⊙. We find that an additional metallicity dependence of approximately ∼Z−0.5 is required to explain the observed scaling. This scaling matches the metallicity dependence of the close binary fraction observed in APOGEE, suggesting that the enhanced SN Ia rate in low-mass galaxies can be explained by a combination of their more extended SFHs and a higher binary fraction due to their lower metallicities. Due to the shape of the MZR, only galaxies below M⋆ ≈ 3 × 109 M⊙ are significantly affected by the metallicity-dependent SN Ia rates. The $\dot{\text{N}}_\text{Ia} / \text{M}_\star \sim \text{M}_\star ^{-0.3}$ scaling becomes shallower with increasing redshift, dropping by factor of ∼2 at 107.2 M⊙ between z = 0 and 1 with our ∼Z−0.5 scaling. With metallicity-independent rates, this decrease is a factor of ∼3. We discuss the implications of metallicity-dependent SN Ia rates for one-zone models of galactic chemical evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.