Abstract

The adsorption of (rac)-BINAP on palladium nanoparticles as well as on a Pd film has been investigated with the aim to unravel the adsorption geometry of BINAP applied for the chiral modification of Pd metal surfaces in catalysis. The Pd nanoparticles with a narrow size distribution were characterized by attenuated total reflection (ATR)-IR spectroscopy. The adsorption geometry of BINAP was determined from the analysis of the experimental IR spectra and their comparison with the spectrum calculated by DFT using a model where BINAP is adsorbed on the (111) surface of a Pd cluster. The studies revealed that BINAP adsorbs with its C2 symmetry axis perpendicular to the Pd surface, and due to the steric hindrance by the phenyl rings connected to the two P atoms, the main interaction with the surface occurs via the two aromatic rings that are oriented parallel to the surface and not directly via the two P atoms. The remaining two phenyl rings are orientated in a tilted position toward the surface. To examine th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call