Abstract

We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems—including multi-constraint variants—by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without weakening the model.Our formulation is equivalent to Gilmore and Gomory׳s, thus providing a very strong linear relaxation. However, instead of using column-generation in an iterative process, the method constructs a graph, where paths from the source to the target node represent every valid packing pattern.The same method, without any problem-specific parameterization, was used to solve a large variety of instances from several different cutting and packing problems. In this paper, we deal with vector packing, bin packing, cutting stock, cardinality constrained bin packing, cutting stock with cutting knife limitation, bin packing with conflicts, and other problems. We report computational results obtained with many benchmark test datasets, some of them showing a large advantage of this formulation with respect to the traditional ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.