Abstract

It is well known that every positive integer can be expressed as a sum of nonconsecutive Fibonacci numbers provided the Fibonacci numbers satisfy $F_n =F_{n-1}+F_{n-2}$ for $n\geq 3$, $F_1 =1$ and $F_2 =2$. In this paper, for any $n,m\in\mathbb{N}$ we create a sequence called the $(n,m)$-bin sequence with which we can define a notion of a legal decomposition for every positive integer. These sequences are not always positive linear recurrences, which have been studied in the literature, yet we prove, that like positive linear recurrences, these decompositions exist and are unique. Moreover, our main result proves that the distribution of the number of summands used in the $(n,m)$-bin legal decompositions displays Gaussian behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.