Abstract

The adaptation of plants to the environment is a key property for survival. Adaptation responses to environmental cues are generated in cells by signaling initiated from cell receptors. Signal transduction is based on protein phosphorylation that is employed in mitogen-activated protein kinase (MAPK) cascades to integrate signals from receptors to cellular responses. MAPK activity is determined by phosphorylation of amino acid residues within the kinase activation loop and their dephosphorylation by phosphatases is essential to control signal duration and intensity.Monitoring protein-protein interactions (PPIs) of MAPKs with MAPK phosphatases in vivo provides valuable information about specificity and intracellular localization of the protein complex. Here, we report studying PPIs between Arabidopsis MAPKs and PP2C-type MAPK phosphatases using bimolecular fluorescent complementation (BiFC) in suspension cell protoplasts. The interactions of the MAPKs MPK3, MKP4 and MPK6 with the phosphatases AP2C1 and AP2C3 have been tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call