Abstract

A duplex-phase Zr-2.5Nb alloy was treated by pulsed laser, followed by careful microstructural characterization using field emission gun scanning electron microscope and attached electron backscatter diffraction. Beneath the modification zones with common uniform α-plate structures (UPS), a layer of unreported bimodal α-plate structures (BPS) featured by coarse (submicron) plates forming multiple cores surrounded by dense fine (nanoscale) plates was found. Presence of such BPS is attributed to non-equilibrium thermodynamic conditions induced by the pulsed laser treatments. Limited diffusion of Nb due to the short pulse during laser heating allows β phases with distinctly different Nb contents to be presented: Nb-enriched prior β films and Nb-depleted β phases, transforming into the fine and the coarse plates during cooling, respectively. Orientation analyses show that both types of plates in the BPS are aroused essentially from a single β orientation, suggesting epitaxial growth of the Nb-depleted β phases from the preexisting β films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.