Abstract

Electrochemiluminescence (ECL) efficiency is determined by charge transfer between coreactants and emitters in coreactant systems, which are usually limited by their slow intermolecular charge transfer. In this study, a covalent organic framework (COF) with aldehyde residue was synthesized, and then coreactants were covalently integrated into the skeleton through the postsynthetic modification strategy, resulting in a crystalline coreactant-embedded COF nanoemitter (C-COF). Compared to the pristine COF with an equivalent external coreactant, C-COF exhibited an extraordinary 1008-fold enhancement of ECL intensity due to the rapid intrareticular charge transfer. Significantly, with the pH increase, C-COF shows protonation-induced ECL enhancement for the first ECL peaked at +1.1 V and an opposite trend for the second ECL at +1.4 V, which were attributed to the antedating oxidation of coreactant in framework and COF self-oxidation, respectively. The resulting bimodal oxidation ECL mechanism was rationalized by spectral characterization and density functional theory calculations. The postsynthetic coreactant-embedded nanoemitters present innovative and universal avenues for advancing ECL systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call