Abstract
We report the self-assembly of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymers (BBCPs) into spherical micelles in an ethanol/water mixture as an efficient templating approach to fabricate mesoporous carbon spheres using polydopamine as a carbon source. Mesopore sizes of up to 25 nm are well controlled and are dependent on the molecular weight (Mw) of the BBCP. Such large pores are difficult to obtain using traditional linear block copolymers templates. Furthermore, bimodal mesoporous carbon spheres with two populations of pore sizes (24.5 and 6.5 nm) are obtained using a BBCP coassembled with a small molecule surfactant (Pluronic F127). An oxygen reduction reaction is used to demonstrate that electrocatalytic performance can be tuned by controlling the carbon sphere morphologies. This work provides a novel and versatile method to fabricate carbon spheres with broadly tunable bimodal pore sizes for potential applications in catalysis, separations, and energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.