Abstract
In this paper, time-frequency domain operation exploiting Empirical Mode Decomposition (EMD) is performed on EEG signals to classify normal activity of healthy person, non-seizure (inter-ictal) and seizure (ictal) activity of seizure patients. Analyzing power spectral density estimation in the set of Intrinsic Mode Functions (IMFs) by periodogram, it is seen rational to specify some prominent IMFs to use in classification problem. Bimodal distribution which is two components Gaussian statistical model is utilized in specified leading IMFs to summarize information in it and propose feature set using the modeling parameters of two component Gaussian probability density function (PDF). Empirical and Gaussian PDF have been plotted along with Kolmogorov-Smirnov (K-S test) goodness-of-fit hypothesis test and found Gaussian statistical model most effective to feed modeling parameters of Gaussian PDF in SVM and ANN classifier for normal, inter-ictal and ictal stages of seizure classification. The proposed technique is accomplished with making higher sensitivity, specificity and accuracy compared to that made by an up-to-date method while wide range of simulations were performed using the same benchmark EEG dataset and classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.