Abstract

The potassium-selenium (K-Se) battery has been considered an appealing candidate for next-generation energy storage systems owing to the high energy and low cost. Nonetheless, its development is plagued by the tremendous volume expansion and sluggish reaction kinetics of the Se cathode. Moreover, implementing favorable areal capacity and longevous cycling of a high-loading K-Se battery remains a daunting challenge facing commercial applications. Herein, we devise a Se and CoNiSe2 coembedded nanoreactor (Se/CoNiSe2-NR) affording low carbon content as an advanced cathode for K-Se batteries. We systematically uncover the enhanced K2Se2/K2Se adsorption and promoted K+ diffusion behavior with the incorporation of Co throughout theoretical simulation and electrokinetic analysis. As a result, Se/CoNiSe2-NR harvests high cycling stability with a capacity decay rate of 0.038% per cycle over 950 cycles at 1.0 C. More encouragingly, equipped with a 3D-printed Se/CoNiSe2-NR electrode with tunable Se loadings, K-Se full batteries enable steady cycling at an elevated Se loading of 3.8 mg cm-2. Our endeavor ameliorates the capacity and lifetime performance of the emerging K-Se device, thereby offering a meaningful tactic in pursuing its practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.