Abstract

We report in this paper the synthesis, characterization, photophysical and electrochemical properties, and detailed DNA binding affinities of two homobimetallic Ru(ii) and Os(ii) complexes derived from a new bridging ligand consisting of two pyridyl-imidazole coordinating units rigidly coupled with a central pyrene moiety. The structure of the diruthenium complex was confirmed by X-ray crystallography. Both complexes exhibit luminescence at room temperature from their 3MLCT states, with lifetimes of τ1 = 12.6 ns and τ2 = 48.8 ns for the Ru(ii) complex (1) and τ1 = 23.7 ns for the Os(ii) complex (2). For 2, the luminescence maximum stretches to the NIR region, which is suitable for potential biological applications. Both complexes exhibit two successive one-electron reversible metal-centered oxidations in the positive potential window. Computational studies employing DFT and TD-DFT methods were also performed to assign the experimentally observed optical spectral bands in the complexes. The binding affinities of the complexes towards DNA were thoroughly investigated through a variety of techniques, viz. absorption, luminescence, excited state lifetime, circular dichroism, thermal denaturation, viscosity measurement, and relative DNA binding studies using ethidium bromide. Finally, molecular docking studies were also carried out to visualize the modes of interaction between the complexes and DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.