Abstract

Platinum-based alloy materials as effective cocatalysts in improving the performance of photocatalytic H2 production have raised great interest. Herein, a facile strategy of chemical reduction is established to synthesize bimetallic PtNi nanoparticles on 2D g-C3N4 nanosheets with excellent photocatalytic activity. The addition of PtNi nanoparticles can provide new H+ reduction sites and increase more active sites of the material. The synergistic effect between PtNi alloy nanoparticles and 2D g-C3N4 nanosheets can regulate electronic structure, narrow the band, accelerate charge transfer efficiency and inhabit the recombination of photo-induced electron (e−) and hole pairs (h+), contributing to the improvement of hydrogen evolution activity. The optimal hydrogen evolution rate of Pt0.6Ni0.4/CN shows higher hydrogen evolution rate (9528 μmol·g−1·h−1), which is 13.1 times than that of pure g-C3N4 nanosheets. Besides, a possible mechanism of photocatalytic hydrogen generation has been brought up according to a series of physical and chemical characterization. This work also provides a potential idea of developing cocatalysts integrating metal alloys with 2D g-C3N4 nanosheets for promoting photocatalytic hydrogen evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.