Abstract
Seawater electrolysis is promising for green hydrogen production but hindered by the sluggish reaction kinetics of both cathode and anode, as well as the detrimental chlorine chemistry environment. Herein, a self-supported bimetallic phosphide heterostructure electrode strongly coupled with an ultrathin carbon layer on Fe foam (C@CoP-FeP/FF) is constructed. When used as an electrode for the hydrogen and oxygen evolution reactions (HER/OER) in simulated seawater, the C@CoP-FeP/FF electrode shows overpotentials of 192mV and 297mV at 100mA cm-2 , respectively. Moreover, the C@CoP-FeP/FF electrode enables the overall simulated seawater splitting at the cell voltage of 1.73V to achieve 100mA cm-2 , and operate stably during 100h. The superior overall water and seawater splitting properties can be ascribed to the integrated architecture of CoP-FeP heterostructure, strongly coupled carbon protective layer, and self-supported porous current collector. The unique composites can not only provide enriched active sites, ensure prominent intrinsic activity, but also accelerate the electron transfer and mass diffusion. This work confirms the feasibility of an integration strategy for the manufacturing of a promising bifunctional electrode for water and seawater splitting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.