Abstract

The in situ solvothermal conversion of metal-organic gels (MOGs) to crystalline metal-organic frameworks (MOFs) represents a versatile and ingenious strategy that has been employed for the synthesis of MOF materials with specific morphologies, high yield, and improved functional properties. Herein, we have adopted an in situ solvothermal conversion of bimetallic MOGs to crystalline bimetallic MOFs with the aim of introducing a redox-active metal heterogeneity into the monometallic counterpart. The formation of bimetallic NiZn-MOF and CoZn-MOF via in situ solvothermal sol-gel-crystal and sol-crystal transformation is found to depend on the solvent systems used. The sol-to-gel-to-crystal transformation of NiZn-MOF via the formation of NiZn-MOG is found to occur through the gradual disruption of gel fibers leading to subsequent formation of microcrystals and single crystals of NiZn-MOF. These bimetallic MOFs and MOGs serve as promising electrocatalysts for oxygen reduction reaction (ORR) with an excellent methanol tolerance property, which can be attributed to the enhanced mass and charge transfer, higher oxygen vacancies, and bimetallic synergistic interactions among the heterometals. This work demonstrates a convenient strategy for producing bimetallic MOGs to MOFs through the introduction of a redox-active metal heterogeneity in the inorganic hybrid functional materials for fundamental and applied research. Our results connect MOGs and MOFs which have been regarded as having opposite physical states, that is, soft vs hard, and provide promising structural correlation between MOGs and MOFs at the molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call