Abstract
The most intensive surface plasmon resonance (SPR) band is typical for the metallic particles of 10-150nm diameters. The SPR band of such nanoparticles is usually narrow and allows using just one laser (i.e. limited range of excitation wavelength) to achieve the maximal enhancement of electromagnetic field near metallic nanostructures caused by surface plasmon oscillations. It hinders usability of plasmonic nanostructures in some application including surface enhanced Raman scattering (SERS) spectroscopy. To overcome this hurdle enlarged metallic nanostructures are fabricated resulting in a broadening of the SPR band due to additional oscillation modes. However, the SPR bands of the enlarged particles are characterized by less intensity and weak enhancement at different wavelengths. In this paper, we proposed an alternative way for the SPR band broadening by use of bimetallic nanostructures on a sculptured template. Plasmonic substrates were fabricated by sequential copper electroplating and silver electroless deposition on porous silicon. Presented data implies that variation in morphology and ratio of the silver/copper nanostructures allow to control position of their SPR band from blue to near-infrared (IR) range. It is shown that SERS-spectroscopy with the fabricated nanostructures provide equal detection limits of rhodamine 6G under red and near-IR excitation wavelengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.