Abstract

The treatment of antibiotics wastewater by electrocatalytic oxidation has attracted much attention. In the paper, a novel halloysite bimetallic (HLS-Cu-Mn) particle electrode material was prepared and a bench-scale electrocatalytic reaction tank was designed. A three-dimensional electrocatalytic oxidation reactor composed of HLS-Cu-Mn and a bench-scale electrocatalytic reaction tank was used to degrade Sulfanilamide (SA) wastewater. Characterization of the synthesized material was conducted with Scanning electron microscopy (SEM), X-ray polycrystalline powder diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET). The electron spin resonance spectroscopy test results confirmed that HLS-Cu-Mn produced a large number of •OH. The electrochemical workstation confirmed that HLS-Cu-Mn had strong electrocatalytic activity and repolarization ability. Under the optimum preparation conditions and degradation process parameters, the removal efficiency of SA and TOC was 99.84% and 88.95% respectively. The method also has good degradation efficiency for aniline, phenol, herbicides, antibiotics, and dyeing wastewater. It was found that 4 main intermediates appeared in the degradation process by Ultra-high performance liquid chromatography/triple tandem quadrupole mass spectrometry (LC-MS). In sum, it was believed that this work provides a new vision and idea for water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call