Abstract

This study presents a novel strategy to fabricate an electrochemical sensor based on a screen-printed electrode (SPE) modified by a bimetallic Mn2+/Fe3+ metal-organic framework (MnFe-MOF) for the direct determination of organophosphate pesticide chlorpyrifos. Square wave voltammetry technique was employed for the electroanalysis, and the limit of detection remained as low as 0.85 nM or 0.29 ppb in a wide linearity range of 1.0 × 10−9 to 1.0 × 10−7 M. The sensor also demonstrated exceptional repeatability and anti-interference performance. Moreover, MnFe-MOF was synthesized using terephthalic acid as the building block using a one-pot solvothermal approach. Multiple characterization studies confirmed the formation of the MOF. The bimetallic MnFe-MOF exhibited high adsorption and electrocatalytic properties towards chlorpyrifos due to the hetero-metal synergism arising between the Mn2+ and Fe3+ ions, owing to which it was employed as the electrode material for non-enzymatic electro-determination of chlorpyrifos. The proposed sensor displayed a satisfactory recovery of the spiked pesticide in real-sample matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.