Abstract

In this work, an efficient and sensitive electrochemical sensor for the determination of ciprofloxacin (CIP) is reported. The sensor was prepared by using a carbon paste electrode (CPE) modified with a combination of bimetallic copper/cerium-based metal organic framework (Cu/Ce-MOF) and nickel doped zinc oxide nanoparticles (NZP). The modifiers were characterized by Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and elemental mapping analysis (EDS). The electrochemical behavior of the modified electrode was studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The developed electrode was employed for the detection of CIP by differential pulse voltammetry (DPV). Under optimal conditions, the anodic peak current response of the electrode was linearly correlated with CIP concentration in the range of 0.75-100 μmol L-1 with a sensitivity of 1.29 μA μmol-1 L-1. The limit of detection and reproducibility of the method were 0.142 μmol L-1 and 2.7%, respectively. The developed sensor showed good selectivity to CIP against possible interferents. The method was applied to determine CIP in water, milk and urine samples. The results indicated that this method has potential to be applied in the analysis of residue CIP in complex matrices with high selectivity, and good reproducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.