Abstract
Photodynamic therapy (PDT), as a light irradiation inducing reactive oxygen species (ROS) generation for cancer treatment, offers facile and promising solutions with respect to spatiotemporal control of ROS generation, and minimizes the systemic toxicity and side effects for highly precise tumor therapy. However, the PDT efficiency is often severely compromised by the complex tumor microenvironment (TME), such as the hypoxic condition and overexpressed antioxidants. Here, for the first time, a bimetallic ion-modified metal-organic framework nanozyme (Zr4+ -MOF-Ru3+ /Pt4+ -Ce6@HA, ZMRPC@HA) is designed. ZMRPC@HA with catalase (CAT) and glutathione oxidase (GSHOx) mimetic activities, can efficiently regulate TME by generation of O2 and deplete the GSH synergistically for enhancing the long-term PDT efficacy toward the hypoxic tumor. The in vitro cell inhibition and in vivo on tumor xenograft evaluations demonstrate the PDT strategy by using ZMRPC@HA can successfully inhibit the differentiation and proliferation of tumor cells under a 660nm laser irradiation in deep tissues. These findings open a new avenue for the design of multimetallic ions functionalized MOF-based nanozymes with multienzyme mimetic activities toward the antitumor and various other biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.