Abstract

Bimetallic transition metal chalcogenides (TMCs) materials have emerged as attractive anodes for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) because of the high intrinsic electronic conductivity, rich redox sites and unique reaction mechanism. In this work, we report the synthesis and electrochemical properties of a novel bimetallic TMCs material CuSbSe2 . The as-prepared anode delivers a high reversible capacity of 545.6 mA h g-1 for SIBs and 592.6 mA h g-1 for LIBs at a current density of 0.2 A g-1 , and an excellent rate capability of 425.9 mA h g-1 at 20 A g-1 for SIBs and 226.0 mA h g-1 at 10 A g-1 for LIBs without any common-used surface modification or carbonaceous compositing. In addition, ex situ X-ray diffraction (XRD) and High-resolution transmission electron microscopy (HRTEM) reveal a combined conversion-alloying reaction mechanism of LIBs and NIBs. Our findings suggest bimetallic CuSbSe2 could be a potential anode material for both SIBs and LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.