Abstract

Peroxidase-mimicking nanozymes that can generate toxic hydroxyl radicals (. OH) hold great promise as antibacterial alternatives. However, most of them display optimal performance under strongly acidic conditions (pH 3-4), and are thus not feasible for many medical uses, including burn infections with a wound pH close to neutral. Herein, we report a copper-based nanozyme (CuCo2 S4 ) that exhibits intrinsic peroxidase-like activity and can convert H2 O2 into . OH at neutral pH. In particular, bimetallic CuCo2 S4 nanoparticles (NPs) exhibited enhanced peroxidase-like activity and antibacterial capacity, superior to that of the corresponding monometallic CuS and CoS NPs. The CuCo2 S4 nanozymes possessed excellent ability to kill various bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, this CuCo2 S4 nanozymes could effectively disrupt MRSA biofilms in vitro and accelerate MRSA-infected burn healing in vivo. This work provides a new peroxidase mimic to combat bacteria in neutral pH milieu and this CuCo2 S4 nanozyme could be a promising antibacterial agent for the treatment of burn infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call