Abstract

Assays of ferric ion (Fe3+) with high sensitivity and selectivity have been required to evaluate its amount in environmental and biological systems. Herein, a novel fluorometric penicillamine-capped bimetallic gold-copper nanoclusters (PA-AuCu bi-MNCs) sensor was constructed for facile, environmentally friendly and quantitative detection of Fe3+ through inner filter effect (IFE) mechanism. One-step green synthetic approach was applied for the synthesis of AuCu bi-MNCs by using d-penicillamine (D-PA) as template and stabilizer. In the presence of Fe3+, the emission of the PA-AuCu bi-MNCs was hindered that caused selective quenching of the fluorescence intensity. The response to Fe3+ allows for two linear dynamic ranges of 5.0 × 10-7 M-7.0 × 10-6 M and 7.0 × 10-6 M-1.0 × 10-4 M with a detection limit of 0.1 μM, which is approximately 53 times lower than the maximum level (5.37 μM) of Fe3+ in drinking water that had been reported by the World Health Organization. The independency of the system from most of the interferences is the important feature of this work. Beside the appropriate selectivity of the proposed method, it shows a considerable operation in various environmental samples including rain water, three types of river water and also in human blood serum as a biological matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.