Abstract

We prepared nanocomposite (XG-AVE-Ag/MgO NCs) using the bimetallic Ag/MgO NPs, Aloe vera extract (AVE), and biopolymer (xanthan gum (XG)) to archive a synergetic antibacterial and wound healing activity. The changes in XRD peaks at 20° of XG-AVE-Ag/MgO NCs indicated the XG encapsulation. The XG-AVE-Ag/MgO NCs showed the zeta potential and zeta size of 151.3 ± 3.14 d.nm and −15.2 ± 1.08 mV with a PDI of 0.265 while TEM showed an average size of 61.19 ± 3.89 nm. The EDS confirmed the co-existence of Ag, Mg, carbon, oxygen, and nitrogen in NCs. XG-AVE-Ag/MgO NCs displayed higher antibacterial activity in terms of zone of inhibition, at 15.00 ± 0.12 mm for B. cereus and 14.50 ± 0.85 mm for E. coli. Moreover, NCs exhibited MICs of 2.5 μg/mL for E. coli, and 0.62 μg/mL for B. cereus. The in vitro cytotoxicity and hemolysis assays indicated the non-toxic properties of XG-AVE-Ag/MgO NCs. The higher wound closure activity was observed with the treatment of XG-AVE-Ag/MgO NCs (91.19 ± 1.87 %) compared to the control, untreated group (68.68 ± 3.54 %) at 48 h of incubation. These findings revealed that XG-AVE-Ag/MgO NCs was promising, non-toxic, antibacterial, and wound-healing agent that deserved further in-vivo studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call