Abstract

Electrodes and electroactive materials are crucial components in the development of supercapacitors due to their geometric properties. In this study, bimetal-organic frameworks (Bi-MOFs, ZIF-8@ZIF-67) were utilized as electrode materials for a high-performance hybrid supercapacitor (HSC) by designing a novel synthesis of metallic carbonate hydroxide/oxides. In particular, the Bi-MOFs function as a sacrificial precursor in the synthesis of hollow NiMn(CO3)0.5·0·.11H2O/ZnO@Co3O4 CNCs (NM-CH/ZnO@Co3O4 CNCs) cubic composite materials by a straightforward low-temperature treatment. The NM-CH/ZnO@Co3O4 CNCs exhibited exceptional electrochemical performance with high specific capacity of 196.3 ± 0.08 mAh/g, specific capacitance of 1179 ± 0.10 F g−1 at 0.5 A g−1, and outstanding cycling stability of 98% after 25,000 cycles compared to the other electrode materials. The porous and hollow structure, along with a large surface area, contributed to the enhanced electrochemical properties of the composite material. An HSC was constructed using NM-CH/ZnO@Co3O4 CNCs as the cathode and activated porous carbon (APC) as the anode, resulting in a device with a specific energy of 33 ± 0.12 Wh kg−1 and a power density of 19354 ± 0.07 W kg−1. The use of Bi-MOF electrodes presents new avenues for the development of high-performance energy storage materials, with the potential for industrial energy storage application demonstrated though the successful powering of portable lightbulbs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call