Abstract

The construction industry is globally known as one of the most hazardous industries. Safety in construction is affected by many factors such as the behavior of workers, site conditions, the design and the implementation of the safety measures. Falls from height and hits by moving or falling objects are the most common types of accidents at construction sites and lead to serious injuries and fatalities. Researchers have been looking for solutions to reduce fall incidents at construction sites. Health and safety (H&S) experts usually follow traditional methods to plan and employ safety measures at sites. These safety planning methods are mainly based on reviewing 2D drawings to identify the risks and associated hazards and have some important deficiencies. First of all, the efficiency of safety planning depends on the experience of H&S experts. More importantly, it is difficult to identify the potential hazards from a 2D drawing while the project is progressing. Building Information Modeling (BIM) can overcome the challenges observed with the traditional safety planning processes. Hazards in a project and the related safety measures should be continuously identified throughout the construction. Since BIM is a 3D model-based process that assists the stakeholders not only to construct and manage but also to plan and design structures; BIM can provide an efficient solution to plan and design the safety measures of a construction project both during the design and construction phases. In addition, the safety review of buildings can be more effectively performed with a 3D building information model. In this study, “Automatic Fall Safety Review (AFSR)” rule checking tool is developed by using Dynamo, the open-source visual programming add-in for Autodesk Revit. This tool analyzes a 3D building model in Revit, and automatically identifies the hazardous places in a building and shows the related safety measures for preventing falls from height in particular. This paper presents the details of the AFSR tool and demonstrates its application for an 8-storey residential building.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.