Abstract

The perceptual feature of a task such as how a task goal is perceived influences performance and coordination of bimanual actions in neurotypical adults. To assess how bimanual task goal modifies paretic and non-paretic arm performance and bimanual coordination in individuals with stroke affecting left and right hemispheres, 30 participants with hemispheric stroke (15 right-hemisphere damage-RHD); 15 left-hemisphere damage-LHD) and 10 age-matched controls performed reach-to-grasp and pick-up actions under bimanual common-goal (i.e., two physically coupled dowels), bimanual independent-goal (two physically uncoupled dowels), and unimanual conditions. Reach-to-grasp time and peak grasp aperture indexed motor performance, while time lags between peak reach velocities, peak grasp apertures, and peak pick-up velocities of the two hands characterized reach, grasp, and pick-up coordination, respectively. Compared to unimanual actions, bimanual actions significantly slowed non-paretic arm speed to match paretic arm speed, thus affording no benefit to paretic arm performance. Detriments in non-paretic arm performance during bimanual actions was more pronounced in the RHD group. Under common-goal conditions, movements were faster with smaller peak grasp apertures compared to independent-goal conditions for all groups. Compared to controls, individuals with stroke demonstrated poor grasp and pick-up coordination. Of the patient groups, patients with LHD showed more pronounced deficits in grasp coordination between hands. Finally, grasp coordination deficits related to paretic arm motor deficits (upper extremity Fugl-Meyer score) for LHD group, and to Trail-Making Test performance for RHD group. Findings suggest that task goal and distinct clinical deficits influence bimanual performance and coordination in patients with left- and right-hemispheric stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call