Abstract

Abstract Modern high-rise buildings may be configured into spaces of widely varying specifications. This situation creates a diverse building environment with multiple variables that make fire hazards difficult to predict and monitor accurately. Therefore, developing and implementing an integrated fire disaster prevention system is necessary in order to effectively prevent fire disasters and adequately protect life and property. In Taiwan, the response to an organization of fire prevention and disaster relief as well as evacuation planning and rescue guidance continue to rely primarily on human-provided intelligence. This method makes disaster-response decision-making inherently prone to error due to the inaccuracy, incompleteness, and poor communication of this intelligence. However, Building Information Modeling (BIM) and wireless sensor networks have been widely discussed in many aspects of building disaster-prevention management as approaches to increasing the accuracy and effectiveness of disaster-response decision-making. The present study uses BIM to construct a BIM-based Intelligent Fire Prevention and Disaster Relief System. This system integrates information on personal localization, on evacuation/rescue route optimization with Bluetooth-based technology, and on a mobile guidance device to create an intelligent and two-way fire disaster prevention system framework that displays the real-time and dynamic fire information in three dimensions (3D). The results of applying the BIM-based system demonstrate that it may effectively provide 3D visualization to support the assessment and planning of fire safety, to provide early detection and alarm responses, to direct efficient evacuation, and to facilitate fire rescue and control efforts in order to increase overall building safety and disaster-response capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.