Abstract

Global warming and other environmental problems are increasing the demand for green and low-carbon buildings. The development of high-performance computers and building information models has a significant impact on low-carbon buildings. Low-carbon building design needs to comprehensively consider geography, climate, material, cost and other factors, a highly complex multidisciplinary research problem. Therefore, it is urgent to use advanced modeling and simulation technology, involving BIM, parametric design, cloud platform and evolutionary algorithm. This paper proposes a BIM based low-carbon building design optimization framework, which realizes the comprehensive trade-off function of building low-carbon energy saving and daylighting performance through an improved genetic algorithm. The framework drives BIM through parameterization and integrates building environment information, geometric information and operation information, including six parts: BIM model establishment, parameter-driven development, building performance simulation, multi-objective optimization design, Pareto frontier analysis, and energy-saving decision-making and evaluation. The case study shows that the simulation results obtained through the framework can effectively achieve building energy conservation while maximizing the lighting performance of the building, providing a scientific basis and reference for construction professionals to design low-carbon buildings. Finally, the application advantages and limitations of the framework in low-carbon building design and its application prospects in low-carbon energy-saving building design are discussed. This research has made contributions to the multi-disciplinary low-carbon energy conservation research field, realized the multi-objective optimization strategy of building performance based on BIM, genetic algorithm and simulation, and is an important supplement to existing building energy conservation and emission reduction optimization design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call