Abstract

Complex freeform surfaces and structures are increasingly designed and used in the product and building industry due to the advances in mathematics and digital design tools. However, there is still a gap between designing freeform surfaces and fabricating them. The process of preparing freeform surfaces’ shop drawings is complicated, time-consuming, and lacks the mutual understanding among the stakeholders. Computational design and Building Information Modeling (BIM) can serve as a mediator agent for the integration of design goals with the geometric logic of constructability. They can also facilitate creating platforms for designing and evaluating freeform structures. This open-ended qualitative research attempts to develop a systematic methodology for automating the design and construction drafting process of freeform lattice space structure. Solving this complex geometric problem aims to benefit the design for construction and manufacturers and shrink the cost and time of the process. The study employs a 3D computer-aided design (CAD) tool and introduces an algorithm that generates a BIM model. The BIM model contains shop drawings and suggests the specifications of the main elements, such as beams, glass panels, and nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.