Abstract

Network Bell experiments give rise to a form of quantum nonlocality that conceptually goes beyond Bell's theorem. We investigate here the simplest network, known as the bilocality scenario. We depart from the typical use of the Bell state measurement in the network central node and instead introduce a family of symmetric isoentangled measurement bases that generalize the so-called "elegant joint measurement." This leads us to report noise-tolerant quantum correlations that elude bilocal variable models. Inspired by these quantum correlations, we introduce network Bell inequalities for the bilocality scenario and show that they admit noise-tolerant quantum violations. In contrast to many previous studies of network Bell inequalities, neither our inequalities nor their quantum violations are based on standard Bell inequalities and standard quantum nonlocality. Moreover, we pave the way for an experimental realization by presenting a simple two-qubit quantum circuit for the implementation of the elegant joint measurement and our generalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call