Abstract

We consider billiard trajectories in ideal hyperbolic polygons and present a conjecture about the minimality of the average length of cyclically related billiard trajectories in regular hyperbolic polygons. We prove this conjecture in particular cases, using geometric and algebraic methods from hyperbolic geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.