Abstract

A theorem of Ryan and Wolper states that a type A Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey-Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson's theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.