Abstract
Conditions favoring population divergence in trophic features, such as the low levels of species richness and interspecific competition found on islands, can be similar to conditions that increase their sexual dimorphism or overall variance. Male emberizid sparrows of tidal marshes have undergone parallel evolution of large bills. We tested for parallel increases between dimorphism and overall variation in bill size by comparing three groups totaling 30 sparrow subspecies: tidal-marsh sparrows, nontidal relatives of tidal-marsh taxa, and representative sparrow taxa. Bill size (and not other features) showed the following patterns in tidal-marsh sparrows compared to nontidal relatives or sparrows at large: (1) an increase; (2) a greater increase in males than females; (3) an increase in sexual dimorphism; and (4) greater variation in females. A high degree of sexual dimorphism in bill size is consistent with the hypothesis that low levels of interspecific and high levels of intraspecific competition select for intraspecific niche divergence. Alternatively, increased sexual selection in tidal-marsh sparrows, vis-a-vis high densities and hence increased male-male competition, may account for the differentially large increase in bill size in males. Relaxed natural selection due to high ecosystem productivity and low interspecific competition may explain why, in tidal-marsh sparrows, female bills have diverged less than males and show higher levels of variability at larger sizes. Both the niche divergence and sexual selection hypotheses depend upon processes, particularly increases in population density, that are similar to those often reported for island passerines. However, the low species diversity and increased intraspecific competition of salt marsh faunas is probably a result of abiotic constraints on colonization (tides and salinity) rather than the isolating distances of island biotas. Thus, both a shift in bill size and increases in its dimorphism and variability may be favored by high productivity and abiotic constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.