Abstract

Excitotoxicity contributes to bilirubin-induced central nervous system injury; however, the mechanisms involved remain controversial. Previous studies from our lab have demonstrated that in juvenile rats bilirubin faciliates γ-aminobutyric acid (GABA)/glycinergic synaptic transmission through activation of presynaptic protein kinase A (PKA) in isolated neurons of the ventral cochlear nucleus (VCN). However, the descending mechanism and physiological effects of bilirubin-induced potentiation remain unclear. Here, whole-cell recordings show that 3×10−6M bilirubin increased the frequency of both spontaneous (sPSCs) and miniature (mPSCs) GABA/glycinergic postsynaptic currents in VCN neurons of postnatal day 12–14 (P12–14) rats. This action was dependent on the concentration and duration of exposure to bilirubin and was only partially suppressed by 10−5M bicuculline. The potentiation effect on mPSCs persisted in a Ca2+-free solution, but was fully occluded by pretreatment with 1,2 bis-(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM), an intracellular Ca2+ chelator. Following pretreatment of the neurons with BAPTA-AM, forskolin, a PKA activator, had no effect on the frequency or amplitude of mPSCs. This suggests that Ca2+ release from presynaptic stores is part of the descending pathway of PKA activation and is responsible for biliurbin-induced potentiation of cell activity. Using gramicidin-perforated patch recordings, the reversal potential of GABA-evoked currents (EGABA) was also investigated. The GABA response resulted in depolarization of 12 of 20 recorded VCN neurons from P12–14 rats. Therefore, potentiation of depolarizing GABA/glycinergic transmission by bilirubin may underlie bilirubin excitotoxicity, which may play a role in the hearing impairment observed among hyperbilirubinemic neonates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call