Abstract
Autism spectrum disorder (ASD) is a serious mental disorder with a complex pathogenesis mechanism and variable presentation among individuals. Although many deep learning algorithms have been used to diagnose ASD, most of them focus on a single modality of data, resulting in limited information extraction and poor stability. In this paper, we propose a bilinear perceptual fusion (BPF) algorithm that leverages data from multiple modalities. In our algorithm, different schemes are used to extract features according to the characteristics of functional and structural data. Through bilinear operations, the associations between the functional and structural features of each region of interest (ROI) are captured. Then the associations are used to integrate the feature representation. Graph convolutional neural networks (GCNs) can effectively utilize topology and node features in brain network analysis. Therefore, we design a deep learning framework called BPF-GCN and conduct experiments on publicly available ASD dataset. The results show that the classification accuracy of BPF-GCN reached 82.35%, surpassing existing methods. This demonstrates the superiority of its classification performance, and the framework can extract ROIs related to ASD. Our work provides a valuable reference for the timely diagnosis and treatment of ASD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary sciences, computational life sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.