Abstract
Water waves are one of the most common phenomena in nature, the studies of which help energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, symbolic computation is performed on the Boussinesq–Burgers system for shallow water waves in a lake or near an ocean beach. For the water-wave horizontal velocity and height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials and N-soliton solutions are worked out, while two auto-Bäcklund transformations are constructed together with the solitonic solutions, where N is a positive integer. Our bilinear forms, N-soliton solutions and Bäcklund transformations are different from those in the existing literature. All of our results are dependent on the water-wave dispersive power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.