Abstract

In this work, we study a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation for the nonlinear dispersive waves in an inhomogeneous medium. Bilinear form and N-soliton solutions are derived, where N is a positive integer. The higher-order breather and lump solutions are constructed based on the N-soliton solutions. Hybrid solutions comprising the solitons and breathers, breathers and lumps, as well as solitons and lumps are worked out. Amplitudes and velocities of the one solitons as well as periods of the first-order breathers are investigated. Amplitudes of the first-order lumps reach the maximum and minimum values at certain points given in the paper. Interactions between any two of those waves are discussed graphically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.