Abstract

ABSTRACTThis paper examines the effects of stacking fault energy on the micro- and nano-indentation behavior of face-centered-cubic thin films. These include: LIGA nickel MEMS structures, alpha brass, copper and high purity aluminum. The measured hardness are then fitted to a strain gradient plasticity model based on the Taylor dislocation hardening model. Hardness is shown to exhibit a size dependence with different characteristic slopes in the micron and nano-scale regimes. Deep indents are shown to exhibit classical linear behavior. However, shallow indents exhibit an abrupt decrease in slope (almost by a factor of 10), giving rise to a bi-linear behavior. Furthermore, as the gradients become less sharp, the trends in the nano-hardness data become similar to those of the microhardness data predicted by the strain gradient plasticity model. Finally, the effects of stacking fault energy are then discussed within the context of cross-slip and hardening associated with Shockly partials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.