Abstract

Bilinear and bicubic interpolations were often used in digital elevation models (DEMs), image scaling, and image restoration, with the aid of spatial transform techniques. This paper resorts to bilinear and bicubic interpolations, along with the spatial transform of images, to present the temperature distribution on a plate with a circular hole. The Dirichlet boundary conditions were applied, a rectangular grid was created, and the nodal values were calculated using the finite difference method (FDM). These methods were also employed to represent the mechanical stress distribution on a plate with a circular hole, under the presence of uniaxial stress. In this case, the nodal values were calculated using the analytical method. Experimental results show that bicubic interpolation generated continuous contours, while bilinear interpolation had a discontinuity in some cases. The results were comparative to images for similar cases when solved through ANSYS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.