Abstract
High-density lipoproteins (HDLs) protect against atherosclerotic cardiovascular disease, mainly by promoting reverse cholesterol transport (RCT). Biliary sterol secretion supposedly represents the final step in RCT, but the relevance of this pathway has not been explored. We tested the dependency of RCT on functional biliary sterol secretion. Macrophage-to-feces RCT was studied in mice with abolished (bile duct ligation) or decreased biliary sterol secretion (adenosine triphosphate binding cassette transporter B4 (Abcb4)-/- mice, with and without administration of a liver X receptor [LXR] agonist) after intraperitoneal injection of (3)H-cholesterol-loaded primary macrophage foam cells from mice. Fecal tracer excretion and also fecal mass sterol excretion were measured. Metabolism and tissue uptake of HDL cholesteryl ester was assessed with HDL kinetic studies. Bile-duct ligation completely abolished RCT from (3)H-cholesterol-loaded macrophages to feces (P < .001). In Abcb4-/- mice lacking biliary cholesterol secretion, RCT was decreased markedly; fecal (3)H-tracer excretion was almost absent within neutral sterols (P < .001) and reduced within bile acids (P < .05). LXR activation stimulated RCT in wild-type (5.5-fold; P < .001) but not Abcb4-/- mice, whereas mass fecal sterol excretion increased similarly in both models (P < .05). Kinetic studies revealed minimal uptake of HDL cholesteryl ester by the intestine, which decreased on LXR activation (P < .05). Functional RCT depends on biliary sterol secretion; there is no compensatory increase in RCT via bile acids. The stimulating effect of LXR agonists on RCT requires biliary cholesterol secretion. These results have implications for therapies against atherosclerotic cardiovascular disease targeting the RCT pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.