Abstract

1. Chylomicron remnants, the intermediate intestinal lipoproteins carrying the bulk of dietary cholesterol, are actively taken up and degraded in the hepatocytes, releasing cholesterol which can be excreted in bile. To study this pathway, a mass of remnants, leading to a consistent rise in hepatic cholesterol, was administered as an intravenous bolus in rats with chronic bile fistula equilibrated by water, electrolyte and taurocholate infusions, and changes in biliary lipids and bile acids were evaluated for up to 24 h in comparison with baseline. 2. A mean 16% increase in the net output of bile acids was observed at each time interval after lipoprotein injection, accounting for a 24h cumulative excretion of approximately one-third of the administered cholesterol mass. These changes did not reach statistical significance however. The cholesterol output and concentrations of all biliary lipids did not vary either. Without taurocholate replacement, remnants injection was followed by a 15-20% decrease in bile acid and bile lipid secretion, presumably due to an insufficient hepatic bile-acid flux. 3. When [3H]cholesterol-labelled remnants were administered at the same mass in the chronic equilibrated bile fistula model, 21% of injected radioactivity was excreted in 24h, distributing mostly in acidic rather than neutral sterols (20.02 +/- 1.85 compared with 1.07 +/- 0.04), with an acidic to neutral sterol mean ratio of 16. 4. To exclude interfering effects from the administered cholesterol mass and chronic bile fistula, 3H-labelled remnants were also studied as a cholesterol trace injected in rats with acute bile fistula.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.